Prediction of Geological Parameters during Tunneling by Time Series Analysis on In Situ Data

Author:

Liu Shanglin1ORCID,Yang Kaihong1ORCID,Cai Jie2,Zhou Siyang1ORCID,Zhang Qian1ORCID

Affiliation:

1. Key Laboratory of Modern Engineering Mechanics, Tianjin University, Tianjin 300072, China

2. Design and Research Institute of Tunneling Machine, China Railway Construction Heavy Industry, Changsha 410100, China

Abstract

A tunnel boring machine (TBM) is a type of heavy load equipment that is widely used in underground tunnel construction. The geological conditions in the tunneling process are decisive factors that directly affect the control of construction equipment. Because TBM tunneling always takes place underground, the acquisition of geological information has become a key issue in this field. This study focused on the internal relationships between the sequential nature of tunnel in situ data and the continuous interaction between equipment and geology and introduced the long short-term memory (LSTM) time series neural network method for processing in situ data. A method for predicting the geological parameters in advance based on TBM real-time state monitoring data is proposed. The proposed method was applied to a tunnel project in China, and the R2 of the prediction results for five geological parameters are all higher than 0.98. The performance of the LSTM was compared with that of an artificial neural network (ANN). The prediction accuracy of the LSTM was significantly higher compared with that of the ANN, and the generalization and robustness of LSTM are also better than those of ANN, which indicates that the proposed LSTM method could extract the sequence properties of the in situ data. The rule of equipment-geology interaction was reflected by increasing the memory structure of the model through the introduction of the “gate” concept, and the accurate prediction of geological parameters during tunneling was realized. Additionally, the influence of time window and distance of prediction on the model is discussed. The proposed method provides a new approach toward obtaining geological information during TBM construction and also provides a certain reference for the effective analysis of the in situ data with sequence properties.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3