Optimization of Kurtosis in the Extend-Infomax Blind Signal Separation Algorithm

Author:

Cui Zhitao1ORCID,Zhang Yongcai1ORCID,Yi Niu1ORCID

Affiliation:

1. School of Computer and Information, DongGuan City College, Guangdong, China

Abstract

A kurtosis optimization method is proposed to improve the blind separated signal qualities based on the extend-infomax algorithm. The kurtosis of the hypothetical source signal was optimized based on the probability density function of sub-Gaussian signals. Obtained parameters after kurtosis optimization were then utilized to validate the effectiveness of the algorithm, which showed that the running time of the algorithm was significantly reduced, and the qualities of the separated signals were enhanced. Methods. Using kurtosis as a control variable, a one-way analysis of variance (ANOVA) was carried out on the algorithm’s performance metrics, the number of iterations, and the signal-to-noise ratio of the separated signal. Results. The results showed that there were significant differences in the above metrics under different kurtosis levels. The curves of average metric values indicate that, with the increase in kurtosis of the hypothetical source signal, the performance of the algorithm was improved.

Funder

Key Field Special Project Guangdong Provincial

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference23 articles.

1. Space or time adaptive signal processing by neural network models

2. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture

3. Blind separation of sources, part II: Problems statement

4. Independent component analysis, a new concept?;P. Comon;Signal Processing,1994

5. Adaptive blind extraction of rolling bearing fault signal based on equivariant adaptive separation via independence;J. Sun;Journal of Electronics and Information Technology,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3