Comprehensive Modeling in Predicting Liquid Density of the Refrigerant Systems Using Least-Squares Support Vector Machine Approach

Author:

Cai Jinya1ORCID,Zhang Haiping2ORCID,Yu Xinping1,Seraj Amir3ORCID

Affiliation:

1. Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang 322100, China

2. Zhejiang Ruiao Testing Technology Service Co.Ltd., Hangzhou 310027, China

3. Department of Instrumentation and Industrial Automation, Ahwaz Faculty of Petroleum Engineering, Petroleum University of Technology (PUT), Ahwaz, Iran

Abstract

A robust machine learning algorithm known as the least-squares support vector machine (LSSVM) model was used to predict the liquid densities of 48 different refrigerant systems. Hence, a massive dataset was gathered using the reports published previously. The proposed model was evaluated via various analyses. Based on the statistical analysis results, the actual values predicted by this model have high accuracy, and the calculated values of RMSE, MRE, STD, and R2 were 0.0116, 0.158, 0.1070, and 0.999, respectively. Moreover, sensitivity analysis was done on the efficient input parameters, and it was found that CF2H2 has the most positive effect on the output parameter (with a relevancy factor of +50.19). Furthermore, for checking the real data accuracy, the technique of leverage was considered, the results of which revealed that most of the considered data are reliable. The power and accuracy of this simple model in predicting liquid densities of different refrigerant systems are high; therefore, it is an appropriate alternative for laboratory data.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Reference88 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Design of Drilling Fluid Chemical Formula Based on Artificial Intelligence;Computational Intelligence and Neuroscience;2022-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3