Improving Accuracy of River Flow Forecasting Using LSSVR with Gravitational Search Algorithm

Author:

Adnan Rana Muhammad1,Yuan Xiaohui1ORCID,Kisi Ozgur2ORCID,Anam Rabia3

Affiliation:

1. School of Hydropower and Information Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

2. Center for Interdisciplinary Research, International Black Sea University, Tbilisi, Georgia

3. Faculty of Agricultural Engineering & Technology, Department of Farm Machinery & Power, University of Agriculture, Faisalabad, Pakistan

Abstract

River flow prediction is essential in many applications of water resources planning and management. In this paper, the accuracy of multivariate adaptive regression splines (MARS), model 5 regression tree (M5RT), and conventional multiple linear regression (CMLR) is compared with a hybrid least square support vector regression-gravitational search algorithm (HLGSA) in predicting monthly river flows. In the first part of the study, all three regression methods were compared with each other in predicting river flows of each basin. It was found that the HLGSA method performed better than the MARS, M5RT, and CMLR in river flow prediction. The effect of log transformation on prediction accuracy of the regression methods was also examined in the second part of the study. Log transformation of the river flow data significantly increased the prediction accuracy of all regression methods. It was also found that log HLGSA (LHLSGA) performed better than the other regression methods. In the third part of the study, the accuracy of the LHLGSA and HLGSA methods was examined in river flow estimation using nearby river flow data. On the basis of results of all applications, it was found that LHLGSA and HLGSA could be successfully used in prediction and estimation of river flow.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3