Affiliation:
1. Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2. Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
Abstract
Mixed micelles of Pluronic F127 andD-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in different molar ratios (10 : 0, 7 : 3, 5 : 5, and 3 : 7) were prepared to characterize this system as nanocarriers for targeted delivery of chemotherapeutic agents. Their size, zeta potential, critical micelle concentration, drug loading content, entrapment efficiency, drug release, cytotoxicity, and stability in serum were evaluatedin vitroby using doxorubicin as the model anticancer drug. The micellar sizes ranged from 25 to 35 nm. The 7 : 3 and 5 : 5 micellar combinations had lower critical micelle concentrations ( M) than the 10 : 0 combination ( M). The entrapment efficiencies of the 7 : 3, 5 : 5, and 3 : 7 micellar combinations were 72%, 88%, and 69%, respectively. Doxorubicin release was greater at acidic tumour pH than at normal physiological pH. The doxorubicin-loaded mixed micelles showed greater percent inhibition and apoptosis activity in human breast adenocarcinoma (MCF-7) and acute monocytic leukaemia (THP-1) cell lines than free doxorubicin did. The mixed micelles were also stable against aggregation and precipitation in serum. These findings suggest that Pluronic F127-TPGS mixed micelles could be used as nanocarriers for targeted anticancer-drug delivery.
Subject
General Materials Science
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献