Polynomial-Based Google Map Graphical Password System against Shoulder-Surfing Attacks in Cloud Environment

Author:

Zhou Zhili1ORCID,Yang Ching-Nung2ORCID,Yang Yimin3ORCID,Sun Xingming1ORCID

Affiliation:

1. Jiangsu Engineering Center of Network Monitoring, School of Computer and Software, Nanjing University of Information Science & Technology, Nanjing, China

2. Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan

3. Department of Computer Science, Lakehead University, Thunder Bay, Canada

Abstract

Text password systems are commonly used for identity authentication to access different kinds of data resources or services in cloud environment. However, in the text password systems, the main issue is that it is very hard for users to remember long random alphanumeric strings due to the long-term memory limitation of the human brain. To address this issue, graphical passwords are accordingly proposed based on the fact that humans have better memory for images than alphanumeric strings. Recently, a Google map graphical password (GMGP) system is proposed, in which a specific location of Google Map is preset as a password for authentication. Unfortunately, the use of graphical passwords increases the risk of exposing passwords under shoulder-surfing attacks. A snooper can easily look over someone’s shoulder to get the information of a location on map than a text password from a distance, and thus the shoulder-surfing attacks are more serious for graphical passwords than for text passwords. To overcome this issue, we design a polynomial-based Google map graphical password (P-GMGP) system. The proposed P-GMGP system can not only resist the shoulder-surfing attacks effectively, but also need much fewer challenge-response rounds than the GMGP system for authentication. Moreover, the P-GMGP system is extended to allow a user to be authenticated in cloud environment effectively and efficiently.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3