Urban Traffic Travel Time Short-Term Prediction Model Based on Spatio-Temporal Feature Extraction

Author:

Kang Leilei1,Hu Guojing2,Huang Hao1,Lu Weike3,Liu Lan14ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

2. Department of Mathematics and Statistical Sciences, Jackson State University, Jackson 39217, MS, USA

3. Alabama Transportation Institute, The University of Alabama, Tuscaloosa 35487, AL, USA

4. National United Engineering Laboratory of Integrated and Intelligent Transportation, Chengdu, Sichuan 610031, China

Abstract

In order to improve the accuracy of short-term travel time prediction in an urban road network, a hybrid model for spatio-temporal feature extraction and prediction of urban road network travel time is proposed in this research, which combines empirical dynamic modeling (EDM) and complex networks (CN) with an XGBoost prediction model. Due to the highly nonlinear and dynamic nature of travel time series, it is necessary to consider time dependence and the spatial reliance of travel time series for predicting the travel time of road networks. The dynamic feature of the travel time series can be revealed by the EDM method, a nonlinear approach based on Chaos theory. Further, the spatial characteristic of urban traffic topology can be reflected from the perspective of complex networks. To fully guarantee the reasonability and validity of spatio-temporal features, which are dug by empirical dynamic modeling and complex networks (EDMCN), for urban traffic travel time prediction, an XGBoost prediction model is established for those characteristics. Through the in-depth exploration of the travel time and topology of a particular road network in Guiyang, the EDMCN-XGBoost prediction model’s performance is verified. The results show that, compared with the single XGBoost, autoregressive moving average, artificial neural network, support vector machine, and other models, the proposed EDMCN-XGBoost prediction model presents a better performance in forecasting.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3