Weatherability of Polypropylene by Accelerated Weathering Tests and Outdoor Exposure Tests in Japan

Author:

Shimizu Kenichi12,Tokuta Yuuki12,Oishi Akihiro13,Kuriyama Takashi14,Kunioka Masao13ORCID

Affiliation:

1. Polymer Subcommittee in the Industrial Technology Cooperative Promotion Committee, Umezono 1-1-1, Tsukuba, Ibaraki 305-8560, Japan

2. Tokyo Metropolitan Industrial Technology Research Institute, Aomi 2-4-10, Koto-ku, Tokyo 135-0064, Japan

3. National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan

4. Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan

Abstract

As a joint study of the Polymer Subcommittee in the Industrial Technology Cooperative Promotion Committee, in which members are Japanese local governmental research institutes and National Institute of Advanced Industrial Science and Technology (AIST, Japan), carried out from 2010 to 2012, polyethylene reference sample (PE-RS) pieces and six types of polypropylene (PP) were subjected to accelerated weathering tests and outdoor exposure tests, resulting in the following findings. (1) The PE-RS was subjected to eight 100 h exposure tests in the same test machine. The accelerated weathering test machines of the participating institutes had high reproducibility. (2) The PE-RS CI values were greater when the temperature in the chamber was greater during accelerated weathering tests, and there was a high correlation with the average temperature in the outdoor exposure tests at 20 places in Japan. (3) By comparing the change in PP strength by normalizing the degradation environment using the PE-RS CI values, the accelerated weathering test with results showing the highest correlation with the outdoor exposure test results was the one with the xenon arc lamp at an irradiance of 60 W/m2 and a BPT of 63°C.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3