Blockchain-Based Internet of Things: Machine Learning Tea Sensing Trusted Traceability System

Author:

Wu Yuting1ORCID,Jin Xiu1,Yang Honggang1,Tu Lijing1,Ye Yong2,Li Shaowen12ORCID

Affiliation:

1. Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agriculture University, Hefei 230001, China

2. School of Information and Computer Science, Anhui Agricultural University, Hefei 230001, China

Abstract

A framework combining the Internet of Things (IoT) and blockchain can help achieve system automation and credibility, and the corresponding technologies have been applied in many industries, especially in the area of agricultural product traceability. In particular, IoT devices (radio frequency identification (RFID), geographic information system (GIS), global positioning system (GPS), etc.) can automate the collection of information pertaining to the key aspects of traceability. The data are collected and input to the blockchain system for processing, storage, and query. A distributed, decentralized, and nontamperable blockchain can ensure the security of the data entering the system. However, IoT devices may generate abnormal data in the process of data collection. In this context, it is necessary to ensure the accuracy of the source data of the traceability system. Considering the whole-process traceability chain of agricultural products, this paper analyzes the whole-process information of a tea supply chain from planting to sales, constructs the system architecture and each function, and designs and implements a machine learning- (ML-) blockchain-IoT-based tea credible traceability system (MBITTS). Based on IoT technologies such as radio frequency identification (RFID) sensors, this article proposes a new method that combines blockchain and ML to enhance the accuracy of blockchain source data. In addition, system data storage and indexing methods and scanning and recovery mechanisms are proposed. Compared with the existing agricultural product (tea) traceability system based on blockchain, the introduction of the ML data verification mechanism can ensure the accuracy (up to 99%) of information on the chain. The proposed solution provides a basis to ensure the safety, reliability, and efficiency of agricultural traceability systems.

Funder

Major Science and Technology Projects in Anhui Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on Development Status of Intelligent Agricultural Plant Protection Machinery;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

2. Creating Traceability in Spice Production and Providing Crop Insurance to Farmers on Crop Failure using Blockchain: A Comprehensive Survey;2023 International Conference on Advanced Computing Technologies and Applications (ICACTA);2023-10-06

3. Blockchain-Based Traceability for Agricultural Products: A Systematic Literature Review;Agriculture;2023-09-04

4. Convergence of Geo-IoT with Advanced Technologies;2023 International Conference on Disruptive Technologies (ICDT);2023-05-11

5. Blockchain and Cryptocurrency Technology in the Saudi Arabia;SN Computer Science;2023-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3