Deterioration of Thermal Barrier Coated Turbine Blades by Erosion

Author:

Swar Rohan1,Hamed Awatef1,Shin Dongyun1,Woggon Nathanial1,Miller Robert2

Affiliation:

1. School of Aerospace Systems, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH 45221, USA

2. NASA John H. Glenn Research Center, Cleveland, OH 44135, USA

Abstract

A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single-stage turbine. In the experimental investigation, tests were performed to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity, and temperature. In the computational simulations, an Euler-Lagrangian two-stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds-Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDFs) were developed to represent experimentally based correlations for particle surface interaction models and TBC erosion rates models. UDFs were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics and TBC erosion rates on the blade surfaces. Computational results are presented in a commercial turbine and a NASA-designed automotive turbine. The similarities between the erosion patterns in the two turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5% of the stator blade span to represent the flow cooling of the combustor liner.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3