Stability Precision Error Correction of Photoelectric Detection by Unmanned Aerial Vehicle

Author:

Hong Huajie1ORCID,He Keyan1ORCID,Gan Zihao1ORCID,Jiang Guilin1ORCID

Affiliation:

1. Unmanned System Institution, School of Intelligence and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

For getting clear images and overcoming shaking caused by various disturbances, real-time compensation of pointing errors will improve the overall stability performance of photoelectric detection by unmanned aerial vehicle. However, the compensation will be greatly deteriorated by error-causing sources, and the error correction process is of great importance. In this research, the problem of stability precision error correction is comprehensively studied. First, by modeling overall kinematics, error-causing sources, and error compensation, the error correction process is mathematically modeled and simulated. Then, by using simulation data regression, error correction models including the global function model and parametric model are established. The models are validated by carrying out both simulations and validation experiments. At last, the performances of the error correction models are compared and analyzed, which concerns the factors of parameter identification, model simplicity, and final improvement effect. Results show that the final stability precision can be greatly improved over 20%, and the parametric model outperforms the global function model comprehensively. It can be concluded that, either in simulation environment or real application scenarios, the obtained models and related analysis results are effective in improving the system stability performance.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3