Fault Identification of Low-Speed Hub Bearing of Crane Based on MBMD and BP Neural Network

Author:

Guo Li-Hong1ORCID,Yang Lai-Ming1ORCID,Peng Yan-Feng2ORCID,Guo Yong2ORCID

Affiliation:

1. Five Meters Wide Thick Plate Factory, Hunan Hualing Xiangtan Iron and Steel Co., Ltd., Xiangtan 411101, China

2. Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

As the key bearing part of the crane, the low-speed hub bearing of the crane exists in special working conditions of low-speed and alternating heavy load. It is difficult to extract its fault characteristics accurately by existing analysis methods. The main idea of the broadband mode decomposition (BMD) method previously proposed is to search in the association dictionary library containing broadband and narrowband signals. However, when it is applied to the broadband signals interfered by strong noise, the decomposition is easy to produce modal confusion, so the modulated broadband mode decomposition (MBMD) method is proposed. The fault signal just can be analyzed by MBMD, so it is applied to the fault diagnosis of low-speed hub bearing of the crane. To realize the fault identification of low-speed hub bearing of the crane, firstly, the original signal is decomposed by MBMD. Secondly, the eigenvalues of the first three-component signals are calculated, the eigenvalue matrix is constructed, and the marked features are selected by the distance evaluation technique (DET). Finally, the marked features are input into BP neural network for training and testing to identify the types of bearing fault. Compared with EEMD, VMD, and BMD, the MBMD method combined with BP neural network has good performance in feature extraction and fault identification.

Funder

Major Science and Technology Project of Hunan Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3