Dermoscopic Image Classification of Pigmented Nevus under Deep Learning and the Correlation with Pathological Features

Author:

Yang Shuang1ORCID,Shu Chunmei1ORCID,Hu Haiyou1ORCID,Ma Guanghui1ORCID,Yang Min2ORCID

Affiliation:

1. Department of Dermato-Venereal, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China

2. School of Nursing, Binzhou Medical University, Binzhou, 256603 Shandong, China

Abstract

The objective of this study was to explore the image classification and case characteristics of pigmented nevus (PN) diagnosed by dermoscopy under deep learning. 268 patients were included as the research objects and they were randomly divided into observation group ( n = 134 ) and control group ( n = 134 ). Image recognition algorithm was used for feature extraction, segmentation, and classification of dermoscopic images, and the image recognition and classification algorithm were studied as the performance and accuracy of fusion classifier were compared. The results showed that the classifier was optimized, and the linear kernel accuracy was 85.82%. The PN studied mainly included mixed nevus, junctional nevus, intradermal nevus, and acral nevus. The sensitivity under collaborative training was higher than that under feature training and fusion feature training, and the differences among three trainings were significant ( P < 0.05 ). The sensitivity of the observation group was 88.65%, and the specificity was 90.26%, while the sensitivity and the specificity of the control group were 85.65% and 84.03%, respectively; there were significant differences between the two groups ( P < 0.05 ). In conclusion, dermoscopy under deep learning could be applied as a diagnostic way of PN, which helped improve the accuracy of diagnosis. The dermoscopic manifestations of PN showed a certain corresponding relationship with the type of cases and could provide auxiliary diagnosis in clinical practice. It could be applied clinically.

Funder

Binzhou Medical University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multidirectional Analysis of Curvelet Against Skin Cancer;2024-01-24

2. Non-invasive hardware methods of skin condition diagnosis;Russian Journal of Clinical Dermatology and Venereology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3