Research on Intelligent Recommendation Model of E-Commerce Commodity Based on Feature Selection and Deep Belief Network

Author:

Li Yunquan1ORCID,Wu Gaofeng1,Liu Chaohui2

Affiliation:

1. School of Information Engineering, Jiaozuo Normal College, Jiaozuo 454000, Henan, China

2. College of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

Abstract

Due to the complexity and uncertainty of customer demand behavior, it was often difficult to obtain satisfactory recommendation results by using the existing online commodity recommendation systems. Therefore, a network commodity intelligent recommendation model based on feature selection and deep belief network was proposed. Based on the basic structure and function of the existing recommendation systems, this paper expounded the interaction process between customers, e-commerce platforms, enterprises, and the recommendation system. By analyzing the internal relationship between customer demand and commodity recommendation, the relationship model between customer demand and commodity recommendation was established. After analyzing the characteristics of customers’ demand for goods, a data mining method was used to classify the characteristics of customers’ demand behavior, and a feature selection method based on deep belief network (DBN) was proposed to obtain the main information conducive to commodity recommendation. Finally, an e-commerce commodity recommendation algorithm based on feature selection and deep belief network was proposed. The experimental results showed that the network commodity recommendation model proposed in this paper can not only provide customers with satisfactory recommendation results but also has better performance than other traditional recommendation models. The recommendation model proposed in this paper can support different e-commerce website recommendation systems.

Funder

Henan Science and Technology Key Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3