Cloud algorithm-driven oximetry-based diagnosis of obstructive sleep apnoea in symptomatic habitually snoring children

Author:

Xu Zhifei,Gutiérrez-Tobal Gonzalo C.,Wu Yunxiao,Kheirandish-Gozal Leila,Ni Xin,Hornero Roberto,Gozal David

Abstract

The ability of a cloud-driven Bluetooth oximetry-based algorithm to diagnose obstructive sleep apnoea syndrome (OSAS) was examined in habitually snoring children concurrently undergoing overnight polysomnography.Children clinically referred for overnight in-laboratory polysomnographic evaluation for suspected OSAS were simultaneously hooked to a Bluetooth oximeter linked to a smartphone. Polysomnography findings were scored and the apnoea/hypopnoea index (AHIPSG) was tabulated, while oximetry data yielded an estimated AHIOXI using a validated algorithm.The accuracy of the oximeter in identifying correctly patients with OSAS in general, or with mild (AHI 1–5 events·h−1), moderate (5–10 events·h−1) or severe (>10 events·h−1) OSAS was examined in 432 subjects (6.5±3.2 years), with 343 having AHIPSG >1 event·h−1. The accuracies of AHIOXI were consistently >79% for all levels of OSAS severity, and specificity was particularly favourable for AHI >10 events·h−1 (92.7%). Using the criterion of AHIPSG >1 event·h−1, only 4.7% of false-negative cases emerged, from which only 0.6% of cases showed moderate or severe OSAS.Overnight oximetry processed via Bluetooth technology by a cloud-based machine learning-derived algorithm can reliably diagnose OSAS in children with clinical symptoms suggestive of the disease. This approach provides virtually limitless scalability and should alleviate the substantial difficulties in accessing paediatric sleep laboratories while markedly reducing the costs of OSAS diagnosis.

Funder

National Heart, Lung, and Blood Institute

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3