The isobaric pulmonary arterial compliance in pulmonary hypertension

Author:

Chemla Denis,Berthelot Emmanuelle,Weatherald JasonORCID,Lau Edmund M. T.,Savale LaurentORCID,Beurnier Antoine,Montani DavidORCID,Sitbon OlivierORCID,Attal PierreORCID,Boulate David,Assayag Patrick,Humbert MarcORCID,Hervé Philippe

Abstract

Pulmonary hypertension is associated with stiffening of pulmonary arteries which increases right ventricular pulsatile loading. High pulmonary artery wedge pressure (PAWP) in postcapillary pulmonary hypertension (Pc-PH) further decreases pulmonary arterial compliance (PAC) at a given pulmonary vascular resistance (PVR) compared with precapillary pulmonary hypertension, thus responsible for a higher total arterial load. In all other vascular beds, arterial compliance is considered as mainly determined by the distending pressure, due to non-linear stress-strain behaviour of arteries. We tested the applicability, advantages and drawbacks of two comparison methods of PAC depending on the level of mean pulmonary arterial pressure (mPAP; isobaric PAC) or PVR.Right heart catheterisation data including PAC (stroke volume/pulse pressure) were obtained in 112 Pc-PH (of whom 61 had combined postcapillary and precapillary pulmonary hypertension) and 719 idiopathic pulmonary arterial hypertension (iPAH).PAC could be compared over the same mPAP range (25–66 mmHg) in 792 (95.3%) out of 831 patients and over the same PVR range (3–10.7 WU) in only 520 (62.6%) out of 831 patients. The main assumption underlying comparisons at a given PVR was not verified as the PVR×PAC product (RC-time) was not constant but on the contrary more variable than mPAP. In the 788/831 (94.8%) patients studied over the same PAC range (0.62–6.5 mL·mmHg−1), PVR and thus total arterial load tended to be higher in iPAH.Our study favours comparing PAC at fixed mPAP level (isobaric PAC) rather than at fixed PVR. A reappraisal of the effects of PAWP on the pulsatile and total arterial load put on the right heart is needed, and this point deserves further studies.

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3