Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica

Author:

Alderkamp Anne-Carlijn1,van Dijken Gert L.1,Lowry Kate E.1,Connelly Tara L.23,Lagerström Maria45,Sherrell Robert M.46,Haskins Christina4,Rogalsky Emily4,Schofield Oscar4,Stammerjohn Sharon E.7,Yager Patricia L.2,Arrigo Kevin R.1

Affiliation:

1. Department of Environmental Earth System Science, Stanford University, Stanford, California, United States

2. Department of Marine Sciences, University of Georgia, Athens, Georgia, United States

3. Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas, United States

4. Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, United States

5. Department of Applied Environmental Science (ITM), Stockholm University, Stockholm, Sweden

6. Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, United States

7. Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, United States

Abstract

Abstract To evaluate what drives phytoplankton photosynthesis rates in the Amundsen Sea Polynya (ASP), Antarctica, during the spring bloom, we studied phytoplankton biomass, photosynthesis rates, and water column productivity during a bloom of Phaeocystis antarctica (Haptophyceae) and tested effects of iron (Fe) and light availability on these parameters in bioassay experiments in deck incubators. Phytoplankton biomass and productivity were highest (20 µg chlorophyll a L−1 and 6.5 g C m−2 d−1) in the central ASP where sea ice melt water and surface warming enhanced stratification, reducing mixed layer depth and increasing light availability. In contrast, maximum photosynthesis rate (P*max), initial light-limited slope of the photosynthesis–irradiance curve (α*), and maximum photochemical efficiency of photosystem II (Fv/Fm) were highest in the southern ASP near the potential Fe sources of the Dotson and Getz ice shelves. In the central ASP, P*max, α*, and Fv/Fm were all lower. Fe addition increased phytoplankton growth rates in three of twelve incubations, and at a significant level when all experiments were analyzed together, indicating Fe availability may be rate-limiting for phytoplankton growth in several regions of the ASP early in the season during build-up of the spring bloom. Moreover, Fe addition increased P*max, α*, and Fv/Fm in almost all experiments when compared to unamended controls. Incubation under high light also increased P*max, but decreased Fv/Fm and α* when compared to low light incubation. These results indicate that the lower values for P*max, α*, and Fv/Fm in the central ASP, compared to regions close to the ice shelves, are constrained by lower Fe availability rather than light availability. Our study suggests that higher Fe availability (e.g., from higher melt rates of ice shelves) would increase photosynthesis rates in the central ASP and potentially increase water column productivity 1.7-fold, making the ASP even more productive than it is today.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3