Author:
BAILLEUL Ismäel,MESNAGER Laurent,NORRIS James
Abstract
We consider small-time asymptotics for diffusion processes conditioned by their initial and final positions, under the assumption that the diffusivity has a sub-Riemannian structure, not necessarily of constant rank. We show that, if the endpoints are joined by a unique path of minimal energy, and lie outside the sub-Riemannian cut locus, then the fluctuations of the conditioned diffusion from the minimal energy path, suitably rescaled, converge to a Gaussian limit. The Gaussian limit is characterized in terms of the bicharacteristic flow, and also in terms of a second variation of the energy functional at the minimal path, the formulation of which is new in this context.
Publisher
Societe Mathematique de France
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献