A family of Newton-type methods with seventh and eighth-order of convergence for solving systems of nonlinear equations
Author:
Affiliation:
1. Institute of Mathematics and Digital Technology
2. Mongolian National University of Education
3. Mongolian University of Science and Technology
Abstract
Publisher
Hacettepe University
Subject
Geometry and Topology,Statistics and Probability,Algebra and Number Theory,Analysis
Reference27 articles.
1. [1] M.F. Abad, A. Cordero and J.R. Torregrosa, A family of seventh-order schemes for solving nonlinear systems, Bull. Math. Soc. Sci. Math. Roum. 57, 133-145, 2014.
2. [2] F. Ahmad, F. Soleymani, F. Khaksar Haghani and S. Serra-Capizzano, Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations, Appl. Math. Comput. 314, 199-211, 2017.
3. [3] A.R. Amiri, A. Cordero, M.T. Darvishi and J.R. Torregrosa, Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems, Appl. Math. Comput. 337, 87-97, 2018.
4. [4] R. Behl and H. Arora, CMMSE: A novel scheme having seventh-order convergence for nonlinear systems, J. Comput. Appl. Math. 404, 113301, 2022.
5. [5] A. Cordero, E. Gómez and J.R. Torregrosa, Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems, Complexity, Article ID 6457532, 11 pages, 2017.
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method;Applied Mathematics and Computation;2025-02
2. A three step seventh order iterative method for solution nonlinear equation using Lagrange interpolation technique;VFAST Transactions on Mathematics;2024-03-13
3. High Efficient Iterative Methods with Scalar Parameter Coefficients for Systems of Nonlinear Equations;Journal of Mathematical Sciences;2024-03
4. A Novel Higher-Order Numerical Scheme for System of Nonlinear Load Flow Equations;Algorithms;2024-02-18
5. Higher Order Newton-Type Iterations;Mathematical Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3