Parametric and semiparametric approaches for copula-based regression estimation

Author:

Ali Alam1ORCID,Pathak Ashok2ORCID,Arshad Mohd3ORCID

Affiliation:

1. Central Univery of Punjab, Bathinda

2. Central University of Punjab, Bathinda

3. Indian Institute of Technology Indore

Abstract

Based on the normality assumption on dependent variable, regression analysis is one of the most popular statistical techniques for studying the dependence between response and explanatory variables. However, violation of this assumption in the data makes regression analysis inappropriate in several real life situations. Copula is a powerful tool for modeling multivariate data and have recently been employed in regression analysis. The key concept behind copula-based regression approach is to formulate conditional expectation in terms of copula density and marginal distributions. In this paper, we explore parametric and semiparametric estimations of the copula-based regression function. The maximum likelihood (ML), inference functions for margins (IFM), and pseudo maximum likelihood (PML) techniques are adopted here for estimation purposes. Extensive numerical experiments are performed to illustrate the performance of the proposed copula-based regression estimators under specified and misspecified scenarios of copulas and marginals. Finally, two real data applications are also presented to demonstrate the performance of the considered estimators.

Funder

Department of Science and Technology (DST), Government of India

Publisher

Hacettepe University

Reference34 articles.

1. [1] E.F. Acar, P. Azimaee and M.E. Hoque, Predictive assessment of copula models, Can. J. Stat. 47 (1), 8-26, 2019.

2. [2] A. Ahdika, D. Rosadi and A.R. Effendie, Conditional expectation formula of copulas for higher dimensions and its application, J. Math. Comput. Sci. 11 (4), 4877-4904, 2021.

3. [3] D. Berg, Copula goodness-of-fit testing: An overview and power comparison, Eur. J. Finance 15 (7-8), 675-701, 2009.

4. [4] T. Bouezmarni, F. Funke and F. Camirand Lemyre, Regression estimation based on Bernstein density copulas, Université de Sherbrooke, Submitted, 2014.

5. [5] B. Choroś, R. Ibragimov and E. Permiakova, Copula Estimation, Copula Theory and Its Applications, Springer, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3