Configuração de algoritmos de aprendizado de máquina na modelagem florestal: um estudo de caso na modelagem da relação hipsométrica

Author:

Costa Filho Sérgio Vinícius Serejo daORCID,Arce Julio EduardoORCID,Montaño Razer Anthom Nizer RojasORCID,Pelissari Allan LibanioORCID

Abstract

No presente estudo foram aplicados quatro algoritmos de aprendizado de máquina na tarefa de modelagem da relação hipsométrica de povoamentos de Pinus taeda L. em diferentes idades. Centenas de combinações de parâmetros foram testadas para os algoritmos k-vizinhos mais próximos, florestas aleatórias, máquinas de vetores de suporte e redes neurais artificiais. Para seleção do melhor modelo para cada algoritmo, utilizou-se o método de busca em grade combinada ao método de validação cruzada k-fold. Os modelos selecionados foram utilizados para predição da altura total de indivíduos pertencentes a um conjunto de dados independente, e os resultados foram comparados aos obtidos por modelos de regressão linear. Os modelos de aprendizado de máquina apresentaram indicadores estatísticos similares aos modelos de regressão linear, no entanto, tiveram dispersão de resíduos menos tendenciosa, principalmente na análise estratificada por povoamento. A máquina de vetores de suporte e a rede neural artificial foram os modelos mais satisfatórios em precisão e dispersão dos resíduos.

Publisher

Universidad Federal de Santa Maria

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3