Application of the Isolation Forest Algorithm to Substantiate the Uniqueness of Water Bodies in the Group of Karst Lakes

Author:

Rasulova A.1ORCID,Izmailova A.1ORCID

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences

Abstract

Improving the scientific foundations for the development and expansion of the network of specially protected natural areas requires the search for algorithms that could be used to identify unique ecosystems. Algorithmization of the anomaly identification process provides an opportunity not only to process large amounts of data but also leads to obtaining objective and comparable estimates. The purpose of this research is to identify the most optimal mechanisms for identifying anomalous values for the morphometric characteristics of karst lakes, which may indicate the uniqueness of the entire lake ecosystem. Within the framework of this article, the study was carried out based on a mathematical analysis of samples built for various characteristics based on the WORLDLAKE database. Statistical methods and the Isolation Forest (iForest) machine learning algorithm were used as methods of analysis. As a result of applying the iForest algorithm to a sample of morphometric parameters of karst lakes, consisting of 738 objects, 43 anomalous water bodies were identified. An expert assessment of the final set of lakes for the uniqueness of their ecosystems showed that the chosen method for identifying anomalous values is well suited for the task at hand. Many lakes with an anomaly index above 60% can be recognized as unique due to the unusualness of their abiotic characteristics; a number of them also have a peculiar biota. The anomalous objects included such well-known lakes as Tserik-Kol’, Crveno, Salda Lake, Trihonida, Vegoritida, Petron, etc. Moreover, for most of them, anomalies were detected for several parameters at once. Thus, the applied algorithm for identifying anomalous morphometric characteristics of lakes made it possible to obtain interesting samples for further expert analysis of the entire lake ecosystem for its uniqueness.

Funder

Russian Foundation for Basic Research

Publisher

Publishing Center Science and Practice

Subject

General Medicine

Reference25 articles.

1. Измайлова А. В. Водные ресурсы озер России // География и природные ресурсы. 2016. №4. С. 5-14.

2. Измайлова А. В. Расулова А. М., Шмакова В. Ю. Выделение озер, обладающих уникальными свойствами, статистическими методами // Гидрометеорология и экология. 2021. № 62. С. 27-51.

3. Драбкова В. Г., Сорокин И. Н. Озеро и его водосбор — единая природная система. Л.: Наука. Ленингр. отд-ние, 1979. 196 с.

4. Мякишева Н. В. Многокритериальная классификация озер. СПб.: Изд-во РГГМУ, 2009. 160 с.

5. Поздняков Ш. Р., Измайлова А. В., Расулова А. М. Уникальные озера как объект научного интереса // Известия РГО. 2020. Т. 152. №3. С. 17-31.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. METHODS OF MACHINE LEARNING IN MODERN METROLOGY;Measuring Equipment and Metrology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3