Investigation of the effects of cilostazol on the myocardial ischemia-reperfusion injury of rats.

Author:

Amrah Anar1ORCID

Affiliation:

1. Republican Diagnostic Center

Abstract

<b><i>Background</i></b>. Myocardial ischemia, occurring as a consequence of imbalance between oxygen supply and demand, causes a rapid metabolic and structural<br /> impairment within the tissue. After a period of ischemia, sudden onset of reperfusion causes a transition to aerobic metabolism within living cells. Afterwards, emerging substrates initiate a chain of reactions leading to tissue injury. This situation is called “ischemia reperfusion injury”. Despite all technical advancements in anesthesia, myocardial protection and cardiac surgical techniques, we still face the clinical reflections of ischemia reperfusion (IR) injury.<br /> <b><i>Materials and methods</i></b>. The protective effect of cilostasole on IR injury in an animal model of experimental myocardial ischemia and reperfusion was investigated. In this regional myocardial ischemia model, male Wistar-Albino rats were used as subjects and they were allocated into three groups; ischemia (n=8), sham (n=8), and cilostazole (n=8). LAD was occluded for 45 minutes, and then reperfused for three hours. Rats received Cilostazole 20 mg/kg/d by gastric gavage once daily. During IR hemodynamic parameters were recorded. Serum analysis for CK-MB and Troponin T were analysed at 180th minute of ischemia. Ischemic zone was measured by dying with Evans Blue and infarct area was measured by dying with triphenyltetrazolium chloride.<br /> <b><i>Results.</i></b> Before the onset of LAD occlusion, as well as at 25th, 60th and 120th minutes of occlusion, all groups were similar in terms of blood pressure and pulse rate.<br /> The total area, affected area and necrotic area were calculated by using formulas; affected area ratio= affected area/total area X 100, necrotic area ratio = necrotic area/total affected area X 100, necrotic area and affected area ratio = necrotic area /affected area X 100.&nbsp; Affected area and total area ratio was significantly higher in IR group, compared with cilostazole group (t=8.965; p&lt;0.001). Similarly, necrotic area and total area ratio was higher in IR group, compared with cilostazole group (t=8.965; p&lt;0.001). The necrotic area and affected area ratios were similar in IR and cilostazole groups (t=0.245; p=0.810). CK-MB level differences were not statistically significant between two groups (Z=0.382; p=0.721).<br /> Troponin levels were similar between IR and cilostazole groups and the difference was not statistically significant (Z=0.630; p=0.574). Pathological specimens of the heart were scanned for myocytolysis, PMNL and hemorrhage.&nbsp; The difference between mean value of MDA enzyme levels were statistically significant (p&lt;0.001) between all groups.&nbsp; MDA enzyme levels, from higher to lower was IR, cilostazole and Sham group.&nbsp; SOD levels (F=5.910; p=0.009) were significantly lower in Sham group when compared with IR group (p=0.008). The differences between Sham and cilostazole groups and IR and cilostazole gropus were not statistically significant (p=0.008). According to planimetric values and enzyme levels, cilostazole was found to be effective in reducing the ischemic zone, without effecting the necrotic zone in cardiac ischemia reperfusion damage. Therefore cilostazole has protective effects agains ischemia reperfusion damage.<br /> <br /> <b>Conclusion</b>.&nbsp;This study explored how cilostazol affects myocardial ischemia-reperfusion injury in rats, finding that cilostazol administration during reperfusion may protect against such injury. Through various analyses, we observed positive outcomes associated with cilostazol treatment, suggesting its potential in reducing myocardial damage. Further research is needed to understand the underlying mechanisms and optimize therapeutic strategies, but our findings highlight cilostazol's promise in improving clinical outcomes in cardiac interventions.

Publisher

JSC National Scientific Medical Research Center

Reference22 articles.

1. Steenberger C, Hill ML, Jennings RB. Volume regulation and plasma membrane injury in aerobic, anearobic, and ischemic myocardium in vitro. Circ Res 1987;57:864-75

2. Writing Committee Members. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RAG, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, Walsh ME, ACC/AHA Task Force Members. Halperin JL, Levine GN, Al-Khatib SM, Birtcher KK, Bozkurt B, Brindis RG, Cigarroa JE, Curtis LH, Fleisher LA, Gentile F, Gidding S, Hlatky MA, Ikonomidis J, Joglar J, Pressler SJ, Wijeysundera DN. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc Med. 2017 Jun;22(3):NP1-NP43. [PubMed]

3. Niu PP, Guo ZN, Jin H, Xing YQ, Yang Y. Antiplatelet regimens in the long-term secondary prevention of transient ischaemic attack and ischaemic stroke: an updated network meta-analysis. BMJ Open. 2016 Mar 17;6(3):e009013. [PMC free article] [PubMed]

4. Powers WJ, Rabinstein AA, Ackerson T, et al.. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019;50:e344–418. 10.1161/STR.0000000000000211 [PubMed] [CrossRef] [Google Scholar]

5. Li, J., X. Xiang, X. Gong, Y. Shi, J. Yang, and Z. Xu. Cilostazol protects mice against myocardium ischemic/ reperfusion injury by activating a PPARgamma/JAK2/ STAT3 pathway. Biomed. Pharmacother. 94:995–1001, 2017. https://doi.org/10.1016/j.biopha.2017.07.143; (PMID: 28810537).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3