NUMERICAL SIMULATION OF THE STRESS-STRAIN STATE OF METAL STRUCTURES USING GEOMETRIC INTERPOLANTS

Author:

Konopatskiy Evgeny1,Shevchuk Oksana1

Affiliation:

1. Donbas National Academy of Civil Engineering and Architecture

Abstract

The work is devoted to carrying out multidimensional interpolation and approximation methods for the numerical solution of differential equations and computer model development of the stress-strain state of metal structures. The core of the work is a fundamental computational algorithm for the numerical solution of differential equations using geometric interpolants on regular and irregular networks. On its basis, computational experiments are carried out on numerical simulation of the stress-strain state of operated reservoirs for storing petroleum products, which form a software package implemented in the Maple interpreter. At the same time, the differential equation for modelling the stress-strain state of an elastic cylindrical shell under axisymmetric loading is improved for the numerical analysis of the stress-strain state of a cylindrical reservoir with geometric imperfections. Also a new approach is proposed to take into consideration the initial conditions of the differential equation, which consists of parallel transfer of the numerical solution to the point, its coordinates correspond to the initial conditions. The advantage of the proposed approach for the numerical solution of differential equations using geometric interpolants is that it eliminates the need to coordinate geometric information in the process of interaction between CAD and FEA systems, by analogy with the isogeometric method.

Publisher

Bryansk State Technical University BSTU

Subject

General Medicine

Reference23 articles.

1. Изогеометрический метод расчета как альтернатива стандартному методу конечных элементов / А.И. Исрафилова, В. Кутрунов, М. Гарсия, М. Калиске // Строительство уникальных зданий и сооружений. 2019. № 9(84). С. 7-21. DOI: 10.18720/CUBS.84.1., Israfilova A.I., Kutrunov V., Garcia M., Kaliske M. Isogeometric Analysis as an Alternative to the Standard Finite Element Method. Construction of Unique Buildings and Structures. 2019;9(84):7-21. doi: 10.18720/CUBS.84.1.

2. An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells / L. Leonetti, F. Liguori, D. Magisano, G. Garcea // Computer Methods in Applied Mechanics and Engineering, 2018. Vol. 331. pp. 159-183. DOI: 10.1016/j.cma.2017.11.025., An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells / L. Leonetti, F. Liguori, D. Magisano, G. Garcea // Computer Methods in Applied Mechanics and Engineering, 2018. Vol. 331. pp. 159-183. DOI: 10.1016/j.cma.2017.11.025.

3. Li W., Nguyen-Thanh N., Zhou K. Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach // Computer Methods in Applied Mechanics and Engineering. 2018. Vol. 336. pp. 111-134. DOI: 10.1016/j.cma.2018.02.018., Li W., Nguyen-Thanh N., Zhou K. Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach // Computer Methods in Applied Mechanics and Engineering. 2018. Vol. 336. pp. 111-134. DOI: 10.1016/j.cma.2018.02.018.

4. Tornabene F., Fantuzzi N., Bacciocchi M. A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on weak formulation isogeometric analysis // Composite Structures. 2017. Vol. 171. pp. 429-461. DOI: 10.1016/j.compstruct.2017.03.055., Tornabene F., Fantuzzi N., Bacciocchi M. A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on weak formulation isogeometric analysis // Composite Structures. 2017. Vol. 171. pp. 429-461. DOI: 10.1016/j.compstruct.2017.03.055.

5. Конопацкий Е.В. Решение дифференциальных уравнений методами геометрического моделирования // Труды 28-й Международной конференция по компьютерной графике и машинному зрению «GraphiCon 2018». 24-27 сентября 2018 г. Томск: ТПУ. 2018. С. 358-361., Konopatsky EV. Solving Differential Equations Using Geometric Modelling Methods. In: Proceedings of the 28th International Conference on Computer Graphics and Machine Vision: GraphiCon; 2018 Sep 24-27; Tomsk: TPU: 2018. p. 358-361.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3