Abstract
The aim of the work is to summarize the main features of normalizing the of digital channel and path error parameters for modern telecommunications network equipment. The research methods are comparative analysis combined with the analysis of domestic standards and foreign recommendations regarding the standardization of digital channel and path error parameters. The main calculated relationship for the digital channel and path error characteristics are presented, namely long-term standards for the coefficient of seconds with errors, the coefficient of seconds with significant errors and the coefficient of blocks with background errors. Examples show the procedure for their calcu-lation and analysis. The paper specifies that the number of units to be monitored per second should be increased with the transmission rate to keep a unit size constant. The error rates of synchronous digital paths are emphasized to re-main zero for long periods of time even at Gbit/s rates, and a significant factor of error seconds corresponds to poor quality paths, so monitoring the error seconds must be performed for maintenance purposes. The findings are that long-term standards for error parameters of digital channels and paths don’t only take into account the type of digi-tal hierarchy and rate modes, but also the composition of the hypothetical reference path and its length.
Publisher
Bryansk State Technical University BSTU
Reference16 articles.
1. Rec. G.826. End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections. – Geneva: ITU-T, 2002. – 34 p., Rec. G.826. End-to-End Error Performance Parameters and Objectives for International, Constant Bit-Rate Digital Paths And Connections. Geneva: ITU-T; 2002.
2. Батенков К.А. Точные и граничные оценки вероятностей связности сетей связи на основе метода полного перебора типовых состояний // Труды СПИИРАН. – 2019. – Т. 18. – №5. – С. 1093–1118., Batenkov K.A. Accurate and Boundary Estimate of Communication Network Connectivity Probability Based on Model State Complete Enumeration Method. SPIIRAS Proceedings. 2019;18(5):1093-1118.
3. Винокуров В.М. Цифровые системы передачи: учеб. пособие. – Федеральное агентство по образованию, гос. ун-т систем упр. и радиоэлектроники, Ин-т доп. образования, факультет повышения квалификации. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2012. – 160 с., Vinokurov V.M. Digital Transmission Systems. Tomsk: Tomsk State University of Control Systems and Radioelectronics; 2012.
4. Rec. G.707/ Y.1321. Network node interface for the synchronous digital hierarchy (SDH). – Geneva: ITU-T, 2008. – 196 p., Rec. G.707/ Y.1321. Network Node Interface for the Synchronous Digital Hierarchy (SDH). Geneva: ITU-T; 2008.
5. Батенков К.А. Формирование сечений телекоммуникационных сетей для анализа их устойчивости с различными мерами связности // Информатика и автоматизация. – 2021. – Т. 20. – №2. – С. 371-406., Batenkov K.A. Forming Telecommunication Networks’ Cross-Sections to Analyze Their Stability With Various Measures of Connectivity. Informatics and Automation. 2021;20(2):371-406.