MECHANICAL PROPERTIES ENHANCEMENT OF BORON CARBIDE BASED ARMOUR MATERIALS

Author:

Hartoko Priyadi,Li Sean

Abstract

<p>Lightweight armor materials made from ceramics have become a great interest in the past decades.  There have been many research efforts to develop the high-performance ceramics for this particular application. Boron carbide (B<sub>4</sub>C) is one of the promised candidates due to its extraordinary hardness, wear resistance, chemical inertness, ultra-lightweight, and its high resistance to radiation.  However, the strong covalent bonding nature of B<sub>4</sub>C makes it hard to be sintered.  Sintering at high temperatures and the presence of impurities can also result in grain coarsening. One of the methods being used to overcome the problems is to introduce Boron (B) as a sintering aid into raw materials of B<sub>4</sub>C.  To evaluate the effects of B addition on the sinterability of B<sub>4</sub>C, B<sub>4</sub>C powders were ball-milled with B powders in different ratios and the mixtures of B<sub>4</sub>C and B were processed by spark plasma sintering technique. Density and toughness of the as-sintered materials were increased along with increasing B content in the range from 1 wt% to 7 wt% while hardness and strength of the samples were also increased when the percentage of B addition is up to 5 wt%.</p>

Publisher

Indonesia Defense University

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3