Solid (Metal)-Liquid (Ionic Liquids) Interface: Basics and Properties

Author:

Banjare Manoj Kumar1,Behera Kamalakanta2,Banjare Ramesh Kumar3,Pandey Siddharth4,Ghosh Kallol K.5

Affiliation:

1. MATS School of Sciences, MATS University, Pagaria Complex, Pandri, Raipur (C.G.), 492004, India

2. Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India

3. Department of Chemistry, Govt, Nagarjuna PG Science College of Raipur, Chhattisgarh 492009, India

4. Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India

5. School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur (C.G.), 492010, India

Abstract

Ionic liquids (IL) are biodegradable and green designer solvents for use in lots of vital applications i.e., catalysis, CO2 capture, green chemistry synthesis, energy storage, particle stabilization, self-assembly media and lubrication. ILs show many attractive properties in proximity to solid surfaces. ILs form well-defined interfacial layers that are tunable-electrically and thermally as well as stable- mechanically, electrically and thermally over a wide range. The structure of solid-ILs interfaces plays a basic role in these applications. In this book chapter, the recent literature is presented while future research information’s discussed. In the past decade, there has been rising interest in this topic, and significant progress has been made in understanding such interfaces. It has been known that electrostatic forces self-assembly of ILs and solid-IL interfaces are two key parameters. Moreover, how the structure of the IL-interface impacts the property, e.g., conductivity, viscosity and friction, has yet to be understood. Surface properties of ILs are explored with techniques that probe force, such as atomic force microscopy (AFM) and surface force apparatus (SFA), with scattering techniques such as neutron (NR) and X-ray reflectometry (XRR), sum frequency generation spectroscopy (SFGS) and other techniques, as well as with molecular dynamics (MD) simulations and theory.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3