Pharmacophore Mapping: An Important Tool in Modern Drug Design and Discovery

Author:

Pathak Dharmraj V.1,Vyas Abha1,Sagar Sneha R.1,Bhatt Hardik G.2,Patel Paresh K.1

Affiliation:

1. Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad 382 210, India

2. Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India

Abstract

Computer-Aided Drug Design (CADD) has become an integral part of drug discovery and development efforts in the pharmaceutical and biotechnology industry. Since the 1980s, structure-based design technology has evolved, and today, these techniques are being widely employed and credited for the discovery and design of most of the recent drug products in the market. Pharmacophore-based drug design provides fundamental approach strategies for both structure-based and ligand-based pharmacophore approaches. The different programs and methodologies enable the implementation of more accurate and sophisticated pharmacophore model generation and application in drug discovery. Commonly used programmes are GALAHAD, GASP, PHASE, HYPOGEN, ligand scout etc. In modern computational chemistry, pharmacophores are used to define the essential features of one or more molecules with the same biological activity. A database of diverse chemical compounds can then be searched for more molecules which share the same features located at a similar distance apart from each other. Pharmacophore requires knowledge of either active ligands and/or the active site of the target receptor. There are a number of ways to build a pharmacophore. It can be done by common feature analysis to find the chemical features shared by a set of active compounds that seem commonly important for receptor interaction. Alternately, diverse chemical structures for certain numbers of training set molecules, along with the corresponding IC50 or Ki values, can be used to correlate the three-dimensional arrangement of their chemical features with the biological activities of training set molecules. There are many advantages in pharmacophore based virtual screening as well as pharmacophore based QSAR, which exemplify the detailed application workflow. Pharmacophore based drug design process includes pharmacophore modelling and validation, pharmacophore based virtual screening, virtual hits profiling, and lead identification. The current chapter on pharmacophores also describes case studies and applications of pharmacophore mapping in finding new drug molecules of specific targets.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3