An Efficient Design and Comparison of Machine Learning Model for Diagnosis of Cardiovascular Disease

Author:

Narayan Sahu Dillip1,Sudhakar G.2,G Raju Chandrakala3,Joshi Hemlata4,Kumbhkar Makhan5

Affiliation:

1. Gangadhar Meher University,Department of MCA, School of Computer Science,Sambalpur,India,768001,

2. Jawaharlal Nehru Technological University,School of Information Technology,Hyderabad,India,500085,

3. BMS College of Engineering,,Bangalore,India,560019,

4. CHRIST (Deemed to be University),Department of Statistics,Bangalore,India,560029,

5. Christian Eminent College,Indore,India,452001,

Abstract

Cardiovascular disease has a significant global impact. Cardiovascular disease is the primary cause of disability and mortality in most developed countries. Cardiovascular disease is a condition that disturbs the structures and functionality of the heart and can also be called heart disease. Cardiovascular diseases require more precise, accurate, and reliable detection and forecasting because even a small inaccuracy might lead to fatigue or mortality. There are very few death occurrences related to cardio sickness, and the amount is expanding rapidly. Predicting this disease at its early stage can be done by employing Machine Learning (ML) algorithms, which may help reduce the number of deaths. Data pre-processing can be employed here to eliminate randomness in data, replace missing data, fill in default values if appropriate, and categorize features for forecasting and making decisions at various levels. This research investigates various parameters that are related to the cause of heart disease. Several models discussed here will come under the supervised learning type of algorithms like Support Vector Machine (SVM), K-nearest neighbor (KNN), and Naïve Bayes (NB) algorithm. The existing dataset of heart disease patients from the Kaggle has been used for the analysis. The dataset includes 300 instances and 13 parameters and 1 label are used for prediction and testing the performance of various algorithms. Predicting the likelihood that a given patient will be affected by the cardiac disease is the goal of this research. The most important purpose of the study is to make better efficiency and precision for the detection of cardiovascular disease in which the target output ultimately matters whether or not a person has heart disease.<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3