The Molecular Dynamics Simulation of Thermal Properties of R290 for Auto-cascade Refrigeration System

Author:

Feng Haocheng12ORCID,Liu Zhenzhen12ORCID,Wang Zilong12,Zhang Hua12

Affiliation:

1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China

2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai, 200093, China

Abstract

Background: Hydrocarbons are increasingly being considered as potential fourth-generation refrigerants due to their environmentally-friendly properties. However, accurate prediction and calculation of their thermal properties are essential for their industrial application. Objective: In this study, molecular dynamics simulations were performed to calculate the density, self-diffusion coefficient, viscosity and thermal conductivity of R290 at various operating temperatures of 200-240 K and pressures of 0.15 and 0.20 MPa, and 270-390 K and pressures of 1.5 and 2.0 MPa to verify the feasibility of the methods. Methods: The equilibrium molecular dynamics simulation (EMD) approach was utilised. The soundness of the model and force field were verified by calculating the density of the system during the relaxation phase. In the output stage, the self-diffusion coefficient was calculated using the Einstein relation, while the viscosity and thermal conductivity were calculated using the Green-Kubo method. The simulation results were compared with the NIST data values, and the errors were analysed. Results:  Results: The density simulation results for R290 in the relaxation phase yielded an overall average absolute relative deviation (AARD) value of 3.97%. In the output stage, the simulation results for the transport coefficients of R290 showed AARD values of 7.68%, 6.60% and 11.04% for the self-diffusion coefficient, viscosity, and thermal conductivity, respectively, compared to the NIST data values. Conclusion: These results indicate the feasibility of using molecular dynamics simulations to study the transport properties of hydrocarbon refrigerants. The findings also provide a foundation for future research on hydrocarbon refrigerant mixtures. Patent: The research presented in this work could serve as a valuable reference for future patent applications and technological innovations related to hydrocarbon refrigerants, particularly R290. This includes, but is not limited to, delivery pipelines, connectors, storage containers, control and detection systems, and the preparation and application of R290 and other refrigerant mixtures.

Funder

National Natural Science Foundation of China

Shanghai Municipal Natural Science Foundation

Shanghai Science and technology innovation action plan

Central Guidance on Local Science and Technology Development Fund of Shanghai City

Special Project of Independent Innovation of Qingdao City

Publisher

Bentham Science Publishers Ltd.

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3