Abnormal Status Detection of Catenary Based on TSNE Dimensionality Reduction Method and IGWO-LSSVM Model

Author:

Lingzhi Yi12,Guo Yu1,Yahui Wang3,Tengfei Dong1,Huang Yu1,Haixiang She4

Affiliation:

1. College of Automation and Electronic Engineering, Xiangtan University, Xiangtan, Hunan, 411105 China

2. Hunan Engineering Research Center of Multi-energy Cooperative Control Technology, c, Hunan, 411105, China

3. College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, 410082, China

4. Pu'er Infrastructure section of China Railway Kunming Group Co., Ltd Kunming, Yunnan, 665000, China

Abstract

Background: Catenary is a crucial component of an electrified railroad's traction power supply system. There is a considerable incidence of abnormal status and failures due to prolonged outside exposure. Driving safety will be directly impacted if an abnormal status or failure occurs. Currently, catenary detection vehicles are the most often utilized technique for gathering data and identifying faults based on manual experience. However, this technology cannot meet the demands of prompt detection and correction of faults in railways engineering due to its extremely low work efficiency. Objective: Based on the above, an abnormal status detection method of catenary based on the improved gray wolf (IGWO) algorithm optimized the least squares support vector machine (LSSVM) with the t-distributed stochastic neighbor embedding (TSNE) is proposed in this paper. In order to improve the accuracy of catenary abnormal status detection and shorten the detection time. Methods: Firstly, the TSNE dimensionality reduction technology is used to reduce the original catenary data to three-dimensional space. Then, in order to address the issue that the parameters of the LSSVM detection model are hard to determine, the improved GWO algorithm is used to optimize the penalty factor and kernel parameter in the LSSVM and establish the TSNE-IGWO-LSSVM catenary abnormal status detection model. Finally, contrasting experimental results of different detection models. The T-distributed Stochastic Domain Embedding (TSNE) is an improved nonlinear dimensionality reduction method based on the Stochastic Neighbor Embedding (SNE). TSNE no longer adopts the distance invariance in linear dimensionality reduction methods such as ISOMAP. TSNE is much better than the linear dimensionality reduction method in the reduction degree of the original dimension. The GWO algorithm, which is frequently used in engineering research, has the advantages of a simple model, great generalization capability, and good optimization performance. The premature convergence is one of the remaining flaws. By applying a good point set to initialize the gray wolf population and the nonlinear control parameters, the gray wolf algorithm is improved in this research. The IGWO algorithm effectively makes up for the problem of balancing the local exploitation and global search capabilities of GWO. Additionally, this IGWO algorithm performs the Cauchy variation operation on the current generation optimal solution to improve population diversity, enlarge the search space, and increase the likelihood of the algorithm escaping the local optimal solution in order to prevent the algorithm from failing the local optimum. The Least Squares Support Vector Machine (LSSVM) is an improved version of the Support Vector Machine (SVM), which replaces the original inequality constraint with a linear least squares criterion for the loss function. The kernel parameters of the RBF function and the penalty factor, these two parameters directly determine the detection effect of LSSVM. In this paper, the IGWO is utilized to adjust and determine the LSSVM parameters in order to enhance the detection capacity of the LSSVM model. Results:: In this paper, in order to minimize the experiment's bias, the training data and the test data are allocated in a ratio of 4:1, the training data are set to 400 groups, and the test data are set to 100 groups. After training the five models, the test data is used to validate and compare the detection capacity of the models. After each of the five detection models was tested ten times, the TSNE-IGWO-LSSVM model is compared with the IGWO-LSSVM model, the TSNE-FA-LSSVM model, the GWO-LSSVM model, and the GWO-ELM model, the results show that the TSNE-IGWO-LSSVM model has the highest average detection accuracy of 97.1% and the shortest running time of 26.9s. For the root mean squared error (RMSE) and the root mean squared error (RMSE), the TSNE-IGWO-LSSVM model is 0.17320 and 2.51% respectively, which is the best among the five models, indicating that it not only has higher detection accuracy but also better convergence of detection accuracy than the other models. Conclusions: With the thousands of miles of catenary and the complexity of the data, it is crucial to shorten the running time in order to improve the efficiency and ease the burden of the processors. The experiments demonstrate that the TSNE-IGWO-LSSVM detection model can detect the abnormal status of catenary more accurately and quickly, providing a new method for the abnormal status detection of catenary, which has certain application value and engineering significance in the era of fully electrified railways.

Funder

National Natural Science Foundation of China

Hunan Province Natural Science Zhuzhou United Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Mechanical Engineering

Reference28 articles.

1. Song Y.; Antunes P.; Pombo J.; Liu Z.; A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities. Mechanism Mach Theory 2020,152,103940

2. Chen R.; Lin Y.; Jin T.; High-speed railway pantograph-catenary anomaly detection method based on depth vision neural network. IEEE Trans Instrum Meas 2022,71,1-10

3. Liu J.; Xu J.G.; Gao L.C.; Liu Q.H.; Research on defect detection of catenary dropper based on machine vision. J Railw Eng Soc 2022,39(5),91-97

4. Zhang F.; Tao K.; Xie X.; Research on Fault Detection Method of Catenary Equipment Based on Deep Learning. IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA) 2021,2,478-482

5. Huang C.; Zeng Y.; The fault diagnosis of catenary system based on the deep learning method in the railway industry. Proceedings of the 5th International Conference on Multimedia and Image Processing ,135-40

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Railroad Catenary Insulator Fault Detection Based on Improved Faster R-CNN;Recent Patents on Mechanical Engineering;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3