Analysis of Fluid Flows in Bounded Domain with Particular Shape of a Cavity using Lattice Boltzmann Method

Author:

Shetty Vikas Vasanth1,Balashanker Kesana2,Dharmaraj Arumuga Perumal2ORCID,Patel Vedant Umang2

Affiliation:

1. Department of Mechanical Engineering, North Carolina State University, North Carolina, USA

2. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India

Abstract

Background: The present work numerically models the incompressible, continuous phase, viscous flow of Newtonian fluid flow in a bounded domain of two-dimensional cavity that is driven by walls and contains grooves in the shape of squares on the lower wall. With the help of the mesoscopic lattice Boltzmann method (LBM) and D2Q9 square lattice model, simulation results are found stable and reliable. The flow physics of the problem by varying Reynolds number, the height and quantity of lower wall grooves, and other fluid flow characteristics within the bounded domain are studied in detail. It is seen that the effects of the groove heights and wavelengths on the fluid flow are structured within the bounded domain. The study is performed from low Re = 100 to high Re = 3200, with minimum two and maximum four-wavelength grooves evaluated on the bottom surface, each having a height of low 0.25 and high 0.75. Additionally, a thorough discussion of complicated vortex dynamics is provided regarding the input parameters and geometry. Objective: The current study aims to use mesoscopic LBM to analyze incompressible viscous fluid flows on complex geometries other than rectangular shapes. Methods: Mesoscopic approach of kinetic theory-based Lattice Boltzmann method (LBM) is implemented in the current work. The popular Single Relaxation Time Lattice Boltzmann method with D2Q9 square lattice model and second-order accurate boundary condition is adopted for the current study. Results: The numerical approach of LBM is used to simulate fluid flows in a 2D bounded domain with grooved bottom surfaces. The influence of different factors, such as the height of bottom-wall surface grooves, flow Reynolds number, and wavelength of these grooves on flow patterns, is then investigated. Conclusion: The numerical study of the bounded domain is considered, and the Reynolds number is varied from 100 to 3200, with two and four-wavelength grooves evaluated on the bottom surface, each having a height of 0.25 and 0.75. The impacts on the flow pattern both within and slightly above the grooves of the computational findings for different Reynolds numbers, groove heights, and groove wavelengths are evaluated. As the Reynolds number rises, the mixing phenomenon of fluid is shown to flow more quickly in the wall-driven enclosures.

Publisher

Bentham Science Publishers Ltd.

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3