Affiliation:
1. Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
Abstract
Background:
The molecular etiology of Pseudoxanthoma Elasticum (PXE), an autosomal
recessive connective tissue disorder, has become increasingly complex as not only mutations in the
ABCC6, but also in ENPP1 and GGCX, can cause resembling phenotypes.
Methods:
To get insights on the common pathway, the overlapping metabolites for these three proteins
were predicted through 3D homology modeling and virtual screening. 3D homology models of
ABCC6, ENPP1, and GGCX were generated by the MODELLER program, which were further validated
using RAMPAGE and ERRAT servers. Substrate binding sites of ABCC6 were predicted using
blind docking of reported in vitro substrates.
Results:
Virtual screening against the substrate binding site of ABCC6 using metabolites listed in Human
Metabolome Databases (HMDB) revealed the best possible substrate of ABCC6. Those listed metabolites
were further docked against predicted substrate binding sites of GGCX and ENPP1. Molecular
docking and virtual screening revealed a list of 133 overlapping metabolites of these three proteins.
Most of them are Phosphatidylinositol (PI), Phosphatidylserine (PS), Diacylglycerol (DAG), phosphatidic
acid, oleanolic acid metabolites and were found to have links with calcification.
Conclusion:
These predicted overlapping metabolites may give novel insights for searching common
pathomechanism for PXE and PXE-like diseases.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmaceutical Science,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献