Multiple Mutations on α, β and γ Domains of Streptokinase Lead to the Generation of Highly Efficient Cysteine Analogues with Promising Features

Author:

Mianroodi Reza Arabi1,Alinodehi Narges Norouzzadeh2,Behrooz Hamideh3,Sabaei Milad4,Nezamiha Farahnaz Khoshdel1

Affiliation:

1. R&D Department, Research and production complex, Pasteur Institute of Iran, Tehran, Iran

2. Department of Genetics and Biotechnology, Faculty of Biological Science, Varamin-Pishva Branch, Islamic Azad, Varamin, Iran

3. Biotechnology department, Faculty of pharmaceutical sciences, Islamic Azad University , Tehran, Iran

4. Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran

Abstract

Background: Streptokinase, one of the most widely used thrombolytic medicines, is a favorable protein for site-specific PEGylation as it lacks any cysteine residues in its amino acid sequence; however, any changes in the protein’s structure should be carefully planned to avoid undesired changes in its function. Objectives: This study aimed to design and produce novel di/tri-cysteine variants of streptokinase from previously developed cysteine analogues, Arg45, Glu263, and Arg319, as candidates for multiple site-specific PEGylation. Methods: Using bioinformatics tools and site-directed mutagenesis, we incorporated concurrent mutations at Arg45, Glu263, and Arg319 (carried out in our previous study) to create di/tri-cysteine variants of streptokinase proteins (SK45-319cys, SK263-319cys, and SK45-263-319cys) and evaluated their kinetic activity parameters by a colorimetric method, using H-D-Val-Leu-Lys-pNA.2HCl (S2251) as substrate. Results: Based on the kinetic results, SK263-319cys with 44% enzyme efficiency increment compared to wild-type SK was the superior protein in terms of activity; as well, SK45-319cys and SK45-263-319cys showed 17 and 22% activity enhancement, respectively. Docking of the mutant streptokinase proteins with μ-plasmin demonstrated that changes in intermolecular interactions caused by amino acid substitution could be the reason for activity difference. Conclusion: The novel mutant proteins created in this study exhibit remarkable biological activity and may be uniquely suitable for simultaneous PEGylation on two/three domains. As well, PEGylated derivates of these variants might prove to be more proficient proteins, compared to the singlecysteine analogs of streptokinase; because of their more surface coverage and increased molecular weight.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3