Cardiotoxicity Assessment of Drugs Using Human iPS Cell-Derived Cardiomyocytes: Toward Proarrhythmic Risk and Cardio-Oncology

Author:

Satsuka Ayano1,Kanda Yasunari1

Affiliation:

1. Division of Pharmacology, National Institute of Health Sciences (NIHS), Kanagawa, 210-9501, Japan

Abstract

Growing evidence suggests that Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) can be used as a new human cell-based platform to assess cardiac toxicity/safety during drug development. Cardiotoxicity assessment is highly challenging due to species differences and various toxicities, such as electrophysiological and contractile toxicities, which can result in proarrhythmia and heart failure. To explore proarrhythmic risk, the Multi-Electrode Array (MEA) platform is widely used to assess QT-interval prolongation and the proarrhythmic potential of drug candidates using hiPSC-CMs. Several consortiums, including the Comprehensive in vitro Proarrhythmia Assay (CiPA) and the Japanese iPS Cardiac Safety Assessment (JiCSA), have demonstrated the applicability of hiPSC-CMs/MEA for assessing the torsadogenic potential of drug candidates. Additionally, contractility is a key safety issue in drug development, and efforts have been undertaken to measure contractility by a variety of imaging-based methods using iPS-CMs. Therefore, hiPSC-CMs might represent a standard testing tool for evaluating the proarrhythmic and contractile potentials. This review provides new insights into the practical application of hiPSC-CMs in early or late-stage nonclinical testing during drug development.

Funder

Japan Agency for Medical Research and Development

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Biotechnology

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3