Chirality Sensing in Coordination-driven Supramolecular Assemblies

Author:

Paul Abhik1ORCID,Roy Subhadip2ORCID

Affiliation:

1. Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India

2. Department of Chemistry, The ICFAI University, Tripura 799210, India

Abstract

Abstract: Chirality is a widespread structural characteristic found in nature and plays a vital role in the structure and functioning of almost all biological systems. Nevertheless, the translation of chirality into synthetic systems is highly intricate yet captivating, as it not only applies fundamental understanding but also has the potential to tackle significant difficulties in biochemistry and medicine. Structurally, the process of coordination-driven selfassembly involves the organization of basic molecular components into well-defined porous homochiral metal-organic cages (MOCs). This allows for a systematic investigation of the enantioselective processes occurring within the nanocavities, which have limited space and specific chiral microenvironments. This article aims to provide a comprehensive summary of the recent advancements in supramolecular chirality generated in the fascinating class of porous MOCs. It will cover the synthesis and characterization of these materials, as well as the implications of their stereochemical information in terms of chiral recognition and enantio-separation. Subsequently, a subjective viewpoint will be presented regarding the potential, possibilities, and significant challenges in the future advancement of this domain, aiming to expand the progress in creating novel chiral functional materials in the realm of chemistry and beyond.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3