Enantioselective Synthesis, Computational Molecular Docking and In Vitro Anticoagulant Activity of Warfarin-based Derivatives

Author:

Afzal Zakia1ORCID,Rashid Naghmana1,Nadeem Humaira2,Khan Arif-Ullah3,Ashraf Zaman1

Affiliation:

1. Department of Chemistry, Allama Iqbal Open University, H-8/2 Islamabad, 44000, Pakistan

2. Department of Pharmacy, Riphah International University, 7th Avenue, Islamabad, 44000, Pakistan

3. Department of Pharmacy, Riphah International University, 7th Avenue, Islamabad, 44000, Pakistan

Abstract

Abstract: Warfarin containing a 4-hydroxycoumarin moiety possesses excellent anticoagulant activity, with the (S) enantiomer being the eutomer. The present work is designed to synthesize warfarin based derivatives enantioselectivity to explore their anticoagulant potential. The substituted chalcones were reacted with 4-hydroxycoumarin in the presence of the chiral organocatalyst 9-amino-9-deoxyepiquinine to afford warfarin-based analogues 5a- 5k. The structures of synthesized compounds 5a-5k were confirmed by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) and electron ionization mass spectroscopy (EIMS) data. The enantiomeric excess (ee) has been found in the range of 16-99% as determined by chiral high-performance liquid chromatography (HPLC) analysis. The in vitro anticoagulant activity of the products 5a-5k was evaluated by plasma recalcification time (PRT) method, and it was found that most of the derivatives showed good anticoagulant activity, specifically compound 5b exhibited excellent results compared to that of warfarin. Compound 5b displayed an IC50 value of 249.88 μM, which is better than that of warfarin (IC50 408.70 μM). The molecular docking studies have been performed against vitamin K epoxide reductase with PDBID 3kp9. The synthesized compounds bind well in the active binding site of the target enzyme. The derivative 5b showed π-π stacking interactions with the amino acid phenylalanine (Phe 114). The antimicrobial activity of synthesized compounds has also been evaluated, and results showed moderate antimicrobial activity. Based on our results, it is proposed that derivative 5b may act as a lead compound to design more potent anticoagulant derivatives.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3