Affiliation:
1. Department of Physics, College of Science, Thi Qar University, Nassiriya 64000, Iraq
Abstract
Background: The Single-wall Carbon Nanotubes (SWCNTs) represent one of
the most active classes of nanostructures, and they have been widely used as active materials
for important applications. In this study, the electronic, thermochemistry and vibrational
properties of zigzag and armchair SWCNTs were investigated.
Objective: Using these investigations, it is possible to obtain much more data to apply
SWCNTs in medical science, industrial technologies and nanosensors applications.
Methods: All the calculations are based on the Density Functional Theory (DFT) at the
B3LYP/6-31G level through the Gaussian 09W program package.
Results: The optimized structures, diameter, contour plots for electronic states (HOMO
and LUMO), energy gaps, thermochemistry functions and vibrational intensities were
performed and discussed.
Conclusion: This study clarified the properties of SWCNTs are dependent on the diameter
of the tube, i.e. the chrial vector (n, m). An addition, these results could help to design
more efficient functional SWCNTs, and these properties play a key role for many
applications.
Publisher
Bentham Science Publishers Ltd.
Subject
General Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献