PIASA, A Novel Peptide, Prevents SH-SY5Y Neuroblastoma Cells against Rotenone-induced Toxicity

Author:

Namasivayam Elangovan1ORCID,Sulthana Ahmed Sha1,Balakrishnan Rengasamy2,Renuka Mani1,Mohankumar Thangavel1,Manimaran Dharmar3,Arulkumar Kuppamuthu1

Affiliation:

1. Department of Biotechnology, School of Bioscience, Periyar University, Salem, Tamilnadu- 636011, India

2. Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Periyan University, Chungju, 27478, Korea

3. Department of Animal Nutrition, Veterinary College and Research Institute, TANUVAS, Namakkal, Tamilnadu 737 002, India

Abstract

Background and Objective: This investigation explores the neuroprotective effect of PIASA, a newly designed peptide, VCSVY, in in-silico and in opposition to rotenone stimulated oxidative stress, mitochondrial dysfunction, and apoptosis in an SH-SY5Y cellular model. Methods: Docking and visualization of the PIASA and rotenone were progressed against mitochondrial respiratory complex I (MCI). The in-silico analysis showed PIASA to have interaction with the binding sites of rotenone, which may reduce the rotenone interaction and its toxicity too. The SH-SY5Y cells were segregated into four experimental groups: Group I: untreated control cells; Group II: rotenone-only (100 nM) treated cells; Group III: PIASA (5 μM) + rotenone (100 nM) treated cells; and Group IV: PIASA-only (5 μM) treated cells. Results: We evaluated the cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), apoptosis (dual staining technique), nuclear morphological changes (Hoechst staining technique), the expressions of BAX, Bcl-2, cyt c, pro-caspase 3, and caspase 3, -6, -8, -9, and cleaved caspase 3 by western blot analysis. In SH-SY5Y cells, we further observed the cytotoxicity, oxidative stress and mitochondrial dysfunction in rotenone-only treated cells, whereas pretreatment of PIASA attenuated the rotenone-mediated toxicity. Moreover, rotenone toxicity is caused by complex I inhibition, which leads to mitochondrial dysfunction, increased BAX expression, while downregulating the Bcl-2 expression and cyt c release, and then finally, caspases activation. PIASA pretreatment prevented the cytotoxic effects via the normalization of apoptotic marker expressions influenced by rotenone. In addition, pre-clinical studies are acceptable in rodents to make use of PIASA as a revitalizing remedial agent, especially for PD in the future. Conclusion: Collectively, our results propose that PIASA mitigated rotenone-stimulated oxidative stress, mitochondrial dysfunction, and apoptosis in rotenone-induced SH-SY5Y cells.

Funder

DST-FIST Government of India

Publisher

Bentham Science Publishers Ltd.

Subject

General Health Professions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3