Synthesis, Antimicrobial Evaluation and Docking Study of Novel 3,5-Disubstituted-2-Isoxazoline and 1,3,5-Trisubstituted-2-Pyrazoline Derivatives

Author:

Ismail Ahmed H.1,Abdula Ahmed M.2,Tomi Ivan H.R.2,Al-Daraji Ali H.R.2,Baqi Younis1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman

2. Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq

Abstract

Background: The frequent use of antibacterial agents leads to antimicrobial resistance, which is one of the biggest threats to global health today. Therefore, the discovery of novel antimicrobial agents is still urgently needed to overcome the severe infections caused by these putative pathogens resistant to currently available drugs. Objective: The present work was aimed to synthesize and investigate the preliminary structureactivity relationships (SARs) of isoxazoline and pyrazoline derivatives as antimicrobial agent. Methods: Target compounds were obtained in a multistep reaction synthesis and the antimicrobial activity was investigated in several species; two-gram negative (Escherichia coli and Pseudomonas aeruginosa), two-gram positive (Staphylococcus aureus and Bacillus subtilis) and one fungi (Candida albicans), using cup-plate agar diffusion method. The most potent compounds were docked into glucosamine-6-phosphate synthase (GlcN-6-P), the molecular target enzyme for antimicrobial agents, using Autodock 4.2 program. Results: Herein, thirteen novel target compounds were synthesized in moderate to good isolated yield. Based on the SARs, two compounds (2c and 5c) were found to be potent antimicrobial agents on all tested targets, recording potency higher than amoxicillin, the standard antimicrobial drug. Compound 2b identified as selective for gram-negative, while compound 7a found to be selective for gram-positive. The hit compounds (2c, 5a, 5c and 5d) were subjected to a docking study on glucosamine-6-phosphate synthase (GlcN-6-P). All hits were found to bind to the orthosteric (active) site of the enzyme, which might represent a competitive mechanism of inhibition. Conclusion: The newly synthesized heterocyclic compounds could serve as potent leads for the development of novel antimicrobial agents.

Funder

German Ministry of Education and Research

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3