Benzazole Substituted Iminocoumarins as Potential Antioxidants with Antiproliferative Activity

Author:

Perin Nataša1,Cindrić Maja1,Vervaeke Peter2,Liekens Sandra2,Mašek Tomislav3,Starčević Kristina4,Hranjec Marijana1

Affiliation:

1. Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, HR-10000 Zagreb, Croatia

2. KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium

3. Department of Animal Nutrition and Dietetics, University of Zagreb, Faculty of Veterinary Medicine, Zagreb, Croatia

4. Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia

Abstract

Background: Benzazole and coumarin derivatives are one of the most privileged heterocyclic substructures in the medicinal chemistry with well-known biological features, which include a wide range of versatile biological activities as well as excellent spectroscopic characteristics thus offering their potential application in many research fields. Objective: The prepared iminocoumarins were synthesized to evaluate their antioxidative potential by using ABTS and FRAP assays and in vitro antiproliferative activity. Method: A series of coumarin derivatives containing a 2-benzazole motif were synthesized and evaluated for their antioxidative capacity and antiproliferative activity. Their molecular structure incorporates a push-pull functionality: an electron donor donating group at the 7-position with an electron-withdrawing group, such as benzimidazole, benzothiazole and imidazopyridine fragment at the 3-position. Results: The iminocoumarins bearing different substituents on 7-position were evaluated for their antiproliferative activity on tree cancer cells with only 4 compounds showing the antiproliferative activity. The most active derivative was N,N-diethylamino substituted benzimidazole derivative 4d and imidazo[4,5-b]pyridine analogue 6b, both also displayed selective activity toward CEM with submicromolar inhibitory concentration (0.059 μM; 0.17 ± 0.09, respectively). The inhibitory effect of 4d and 6b derivatives on the cell-cycle progression of HeLa cells was studied. A flow cytometric analysis of the HeLa cells indicated an appreciable cell-cycle arrest in a dose-dependent manner. Antioxidant properties were studied by ABTS and FRAP assays and obtained results revealed that the most promising antioxidant has proven to be compound 3b while other compounds, in general, showed moderate to very low antioxidative capacity in both assays. Conclusion: Unsubstituted benzimidazole derivatives bearing hydroxyl group on iminocoumarin nuclei exhibited the most prominent antioxidant potential in ABTS assay (3b; 40.5 ± 0.01). The most significant and selective antiproliferative activity was displayed by compounds 4d and 6b (0.059 μM; 0.17 ± 0.09, respectively), which were chosen as lead compounds for further optimization and rational design to obtain more active and selective antiproliferative agents.

Funder

Croatian Science Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3