Antidiabetic Activity of Dihydropyrimidine Scaffolds and Structural Insight by Single Crystal X-ray Studies

Author:

Bairagi Keshab M.1ORCID,Younis Nancy S.2ORCID,Emeka Promise M.2ORCID,Sangtani Ekta3ORCID,Gonnade Rajesh G.3ORCID,Venugopala Katharigatta N.2ORCID,Alwassil Osama I.4ORCID,Khalil Hany E.2ORCID,Nayak Susanta K.1ORCID

Affiliation:

1. Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India

2. Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia

3. Center for Materials Characterisation, CSIR-National Chemical Laboratory, Dr. HomiBhabha Road, Pune 411 008, India

4. Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Abstract

Background: This research project is designed to identify the anti-diabetic effects of the newly synthesized compounds to conclude the perspective of consuming one or more of these new synthetic compounds for diabetes management. Introduction: A series of dihydropyrimidine (DHPM) derivative bearing electron releasing and electron-withdrawing substituent’s on phenyl ring (a-j) were synthesized and screened for antihyperglycemic( anti-diabetic) activity on streptozotocin (STZ) induced diabetic rat model. The newly synthesized compounds were characterized by using FT-IR, melting point, 1H and 13C NMR analysis. The crystal structure and supramolecular features were analyzed through single-crystal X-ray study. Anti-diabetic activity testing of newly prepared DHPM scaffolds was mainly based on their relative substituent on the phenyl ring along with urea and thiourea. Among the synthesized DHPM scaffold, the test compound c having chlorine group on phenyl ring at the ortho position to the hydropyrimidine ring with urea and methyl acetoacetate derivative shows moderate lowering of glucose level. However, the title compounds methyl 4-(4-hydroxy-3-methoxyphenyl)- 6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(g) and ethyl 4-(3-ethoxy-4- hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(h) having methoxy and ethoxy substituents on phenyl ring show significant hypoglycemic activity compared to the remaining compounds from the Scheme 1. Methods: The experimental rat models for the study were divided into 13 groups (n = 10); group 1 animals were treated with 0.5% CMC (0.5mL) (vehicle); group 2 were considered the streptozotocin (STZ)/nicotinamide diabetic control group (DC) and untreated, group 3 diabetic animals were administered with gliclazide 50 mg/kg and act as a reference drug group. The remaining groups of the diabetic animals were administered with the newly synthesized dihydropyrimidine compounds in a single dose of 50 mg/kg orally using the oral gavage, daily for 7 days continuously. The blood glucose level was measured before and 72 hrs after nicotinamide-STZ injection, for confirmation of hyperglycemia and type 2 diabetes development. Results: Blood glucose levels were significantly (p<0.05) reduced after treatment with these derivatives. The mean percentage reduction for gliclazide was 50%, while that of synthesized compounds were approximately 36%. Conclusion: Our result suggests that the synthesized new DHPM derivative containing alkoxy group on the phenyl ring shows a significant lowering of glucose level compared to other derivatives.

Funder

SERB, DST

National Research Foundation, South Africa

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3