Structure-activity Relationship Study on Therapeutically Relevant EGFR Double Mutant Inhibitors

Author:

Fatima Shehnaz1,Agarwal Subhash M.1

Affiliation:

1. Bioinformatics Division, ICMR-National Institute of Cancer Prevention and Research, I-7, Sector-39, Noida-201301, India

Abstract

Background: EGFR is a clinically approved drug target in cancer. The first generation tyrosine kinase inhibitors targeting L858R mutated EGFR are routinely used to treat non-small cell lung cancer (NSCLC). However, the presence of a secondary mutation (T790M) tenders these inhibitors ineffective and thus results in the relapse of the disease. Objective: New reversible inhibitors are required, which act against T790M/L858R (TMLR) double mutants and overcome resistance. Method: In the present study, various Fragment based QSAR (G-QSAR) models along with interaction terms have been studied for amino-pyrimidine derivatives having biological activity against TMLR mutant enzyme. Results: The G-QSAR models developed using partial least squares regression via stepwise forward- backward variable selection technique showed the best results. The model showed a high correlation coefficient (r² = 0.86), cross-validation coefficient (q² = 0.81) and predicted correlation (predicted r² = 0.62), which indicated that the model is robust and predictive. Based on the model, it was revealed that at R1 position increasing saturated carbon (number of –CH atom connected with 3 single bonds i.e. SsssCHcount) and retention index (chi3) is desired for the enhancement of bioactivity. Additionally, at the R2 position, increasing lipophilic character (slogp) and at site R3, the polarizability of compound need to be increased for better inhibitory activity. We further studied the contribution of interactions among significant descriptors in enhancing the activity of the compounds. It revealed that the presence of Sum((R1-SsssCHcount, R2-slogp) and Mult(R1-chi3, R3-polarizabilityAHC) are the most significantly influencing descriptors. We further compared the variation in the most and least active compounds which established that retention of the above properties is essential for imparting significant inhibitory activity to these molecules. Conclusion: The study provides site specific information wherein chemical group variation influences the inhibitory potency of TMLR amino-pyrimidine inhibitors, which can be used for designing new molecules with the desired activity.

Funder

Department of Health Research, India

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3