Influence of the Presence of Sulfur and Oxygen Atoms on Molecular, Thermodynamic and Transport Properties in Hydrocarbon Mixtures

Author:

Perez-Sanchez Josue Francisco1,del Carmen Galindo-Lopez Ruth2,Suarez Dominguez Edgardo Jonathan1,Rodriguez-Rodriguez Jpsé Rafael3,Perez-Badell Yoana3,Izquierdo Kulich Elena Francisco3

Affiliation:

1. FADU Research Centre, UAT, Circuito Universitario S/N, Centro Universitario Sur, Tampico, Tamaulipas, CP, 89000, Mexico

2. Facultad de Ingeniería Tampico, UAT, Circuito Universitario S/N, Centro Universitario Sur, Tampico, Tamaulipas, CP, 89000, Mexico

3. Department of Physical Chemistry, Faculty of Chemistry, Havana University, Havana, Cuba

Abstract

Introduction: Crude oil is a complex blend of various hydrocarbon families, with compositions that vary depending on the source well and exploitation duration. To categorize its constituents, SARA analysis divides them into saturated, aromatic, resins, and asphaltenes. Heavy asphaltene- rich crude oils can present challenges like viscosity and pipeline blockages, which are often addressed with viscosity-reducing additives. However, a theoretical framework explaining how these additives affect crude oil is lacking, relying primarily on empirical observations. To optimize these additives, it is crucial to understand the underlying chemical and physical processes. This study hypothesizes that asphaltenic crude oils influence viscosity through colloidal properties linked to molecular interactions. Methods: The research aimed to analyze the impact of sulfur in asphaltenes and oxygen in flow improvers on the transport properties of an idealized crude oil, with the goal of predicting additive feasibility. A methodology that combined computational quantum chemistry and statistical thermodynamics was used. An idealized model of crude oil was created, consisting of non-polar alkanes and polar asphaltenes with sulfur atoms. A flow improver was simulated with an aromatic-aliphatic structure containing oxygen and hydroxyl groups, and viscosity was calculated. Results: This study assessed the transport properties of the mixture using principles of statistical thermodynamics. The theoretical insights revealed that reducing viscosity in asphaltene-rich crude oils with additives depends on several critical factors, including the formation of the dispersed phase, the reduced viscosity of the additive, and the effects of dilution. The research identified a strong link between the enhanced effectiveness of these additives and their structural and molecular properties. Conclusion: The theoretical results suggest that additives that act as viscosity reducers in asphalt crudes achieve optimal performance when they possess both higher polarity and reduced viscosity.

Funder

Consejo Tamaulipeco de Ciencia y Tecnología

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3