Affiliation:
1. Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
Abstract
Background:
Transdermal drug delivery systems (TDDS) offer several advantages over
traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier,
researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and
ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive
drug administration due to their deformability and flexible membrane. They have been extensively
studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs
through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects.
Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic
applications.
Objectives:
The aim of the present review is to discuss the various advantages and limitations of
transfersomes and their mechanism to penetration across the skin, as well as their application for the
delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.
Methods:
Data we searched from PubMed, Google Scholar, and ScienceDirect.
Results:
In this review, we have explored the various methods of preparation of transferosomes and
their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs,
and transdermal immunization.
Conclusion:
In comparison to other vesicular systems, transfersomes are more flexible, have greater
skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are
capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal
drug delivery. The developed transfersomal gel could be used to improve medicine delivery through
the skin.
Publisher
Bentham Science Publishers Ltd.