Synapsin 1 Ameliorates Cognitive Impairment and Neuroinflammation in Rats with Alzheimer’s Disease: An Experimental and Bioinformatics Study

Author:

Ma Wei1,Lu Kui2,Liang Hua-Min1,Zhang Jin-Yuan1

Affiliation:

1. Department of Neurology, General Hospital of Ningxia Medical University. Yinchuan750004, China

2. Department of Neurology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China

Abstract

Background::: Alzheimer’s disease (AD) is a persistent neuropathological injury that manifests via neuronal/synaptic death, age spot development, tau hyperphosphorylation, neuroinflammation, and apoptosis. Synapsin 1 (SYN1), a neuronal phosphoprotein, is believed to be responsible for the pathology of AD. Objective:: This study aimed to elucidate the exact role of SYN1 in ameliorating AD and its potential regulatory mechanisms. Methods:: The AD dataset GSE48350 was downloaded from the GEO database, and SYN1 was focused on differential expression analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After establishing an AD rat model, they were treated with RNAi lentivirus to trigger SYN1 overexpression. The amelioration of SYN1 in AD-associated behavior was validated using multiple experiments (water maze test and object recognition test). SYN1’s repairing effect on the important factors in AD was confirmed by detecting the concentration of inflammatory factors (interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α), neurotransmitters (acetylcholine (ACh), dopamine (DA), and 5-hydroxytryptophan (5-HT)) and markers of oxidative stress (glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS)). Molecular biology experiments (qRT-PCR and western blot) were performed to examine AD-related signaling pathways after SYN1 overexpression. Results:: Differential expression analysis yielded a total of 545 differentially expressed genes, of which four were upregulated and 541 were downregulated. The enriched pathways were basically focused on synaptic functions, and the analysis of the protein– protein interaction network focused on the key genes in SYN1. SYN1 significantly improved the spatial learning and memory abilities of AD rats. This enhancement was reflected in the reduced escape latency of the rats in the water maze, the significantly extended dwell time in the third quadrant, and the increased number of crossings. Furthermore, the results of the object recognition test revealed reduced time for rats to explore familiar and new objects. After SYN1 overexpression, the cAMP signaling pathway was activated, the phosphorylation levels of the CREB and PKA proteins were elevated, and the secretion of neurotransmitters such as ACh, DA, and 5-HT was promoted. Furthermore, oxidative stress was suppressed, as supported by decreased levels of MDA and ROS. Regarding inflammatory factors, the levels of IL-6, IL-1β, and TNF-α were significantly reduced in AD rats with SYN1 overexpression. Conclusion:: SYN1 overexpression improves cognitive function and promotes the release of various neurotransmitters in AD rats by inhibiting oxidative stress and inflammatory responses through cAMP signaling pathway activation. These findings may provide a theoretical basis for the targeted diagnosis and treatment of AD.

Publisher

Bentham Science Publishers Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3