Nanocarriers: Exploring the Potential of Oligonucleotide Delivery

Author:

Alsaidan Omar Awad1

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72341, Saudi Arabia

Abstract

Abstract: Nanoparticle-based delivery systems have emerged as promising tools in oligonucleotide therapeutics, facilitating precise and targeted delivery to address several disease conditions. The multifaceted landscape of nanoparticle-based oligonucleotide delivery encompasses the fundamental aspects of nanotechnology in delivery systems, various classes of oligonucleotides, and the growing field of ON-based therapeutics. These ON-based therapeutics are utilized to target specific genetic sequences within cells, offering promising avenues for treating various diseases by regulating gene expression or interfering with specific cellular processes. The integration of nanotechnology in delivery systems offers several advantages, given their intricate systems. Being a diverse class of agents, oligonucleotides provide a wide range of potential owed to each class of agents that support therapeutic interventions. Oligonucleotide-based platforms have demonstrated their versatility in molecular targeting and intervention strategies. Moreover, the complexities and delivery challenges in oligonucleotide therapeutics are expected to be overcome by the application of nanotechnology-based platforms.Because nanoparticles can overcome biological barriers and improve bioavailability, stability, and specificity, their role in developing oligonucleotide delivery systems is greatly valued. The innovative solutions facilitated by nanoparticles are efficient strategies to address the arduous barriers. These strategies beat obstacles like enzymatic degradation, cellular uptake, and immune response, which in turn paves the way for enhanced therapeutic efficacy. This review paper intends to explore the various applications of nanoparticle-mediated oligonucleotide delivery in a variety of diseases. It outlines the promising growth of therapies enabled by these systems, extending from cancer to genetic disorders, neurodegenerative diseases, etc. We have underscored the pivotal role of nanoparticle-based delivery systems in uncovering the full potential of oligonucleotide therapeutics, thereby fostering advancements in precision medicine and targeted therapies.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3