Cucurbitacin D Inhibits the Proliferation of HepG2 Cells and Induces Apoptosis by Modulating JAK/STAT3, PI3K/Akt/mTOR and MAPK Signaling Pathways

Author:

Türköz Yusuf1,Mehdi Üremiş Muhammed1,Üremiş Nuray1,Tosun Emir2,Durhan Merve3,Çiğremiş Yılmaz3,Baysar Ahmet2

Affiliation:

1. Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey

2. Department of Chemical Engineering, Faculty of Engineering, Inonu University, Malatya, Turkey

3. Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Malatya, Turkey

Abstract

Background: Cucurbitacin D (CuD) is a natural compound that can be isolated in various plant families, mainly from Ecballium elaterium (L.) A. Rich. (E. Elaterium). It is a triterpenoid with a broad spectrum of biological activity, including anti-cancer properties. Hepatocellular carcinoma, the aggressive type of liver cancer, is an important public health problem worldwide. Objective: In the present study, we investigated the anticancer effect of CuD treated at different doses on the HepG2 cell line and the underlying mechanism in vitro. Method: CuD was isolated from the fruit juice of E. Elaterium plant, and quantitative analysis was performed using high-performance liquid chromatography. The cell viability effect of purified CuD was determined by the MTT test, and also cell apoptosis and cell cycle arrest effects were determined by flow cytometry. DNA damage was evaluated with the comet test. Proteins and genes involved in PI3K/AKT/mTOR, MAPK, and JAK2/STAT3 signaling pathways were evaluated by western blot and qRT-PCR. Result: CuD showed both antiproliferative and cytotoxic effects against the HepG2 cell line in a dose and time-dependent manner. It was observed that CuD induced apoptosis and blocked the cell cycle in HepG2 cells. It was observed that the expressions of genes and some proteins that play a key role in PI3K/AKT/mTOR, MAPK, and JAK2/STAT3 cascades were dose-dependently down-regulated and led to activatation of the apoptotic pathway. Conclusion: All these results show promise that CuD may have a therapeutic effect in hepatocellular carcinoma.

Funder

Inonu University Scientific Research Project Units, Malatya, Turkey

Publisher

Bentham Science Publishers Ltd.

Subject

Cancer Research,Drug Discovery,Pharmacology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3