New Method for Sequence Similarity Analysis Based on the Position and Frequency of Statistically Significant Repeats

Author:

Jovanovic Jasmina T.1ORCID

Affiliation:

1. Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

Abstract

Background: The analysis of DNA nucleotide sequence similarity among different species is crucial in identifying their functional, structural or evolutionary relationships. The number of bioinformatics tools designed to perform the similarity analysis of nucleotide sequences has been growing rapidly. According to the current literature, alignment-free methods have not been performed on repetitive nucleotide sequence of different lengths. Objective: To develop a new algorithm for determining sequence characteristics and similarity based on statistically significant repetitive elements of different lengths, which are located in analyzed sequences. Methods: This paper presents Repeats-Position/Frequency method (R-P/F method), for determining nucleotide sequence similarity which takes into consideration statistically significant repetitive parts of analyzed sequences. It is based on information theory and the fact that both position and frequency of repeated sequences are not expected to occur with the identical presence in a random sequence of the same length. Nucleotide sequences are presented in rn-dimensional vector space and their hierarchy is constructed by applying hierarchical clustering algorithm. Results: R-P/F method has been validated on multiple data sets of nucleotide sequences and compared with results obtained from alignment-based algorithms BLAST and Clustal Omega, and multiple wellestablished alignment-free dissimilarity measures. Presented method provides results comparable with other commonly used methods focused on resolving the same problem, with the novel view on the used repetitive parts of sequences in these calculations. Conclusion: The presented, novel algorithm for calculating sequence similarity measure is effective in discovering relationships among the sequences and makes a powerful and complementary addition to existing sequence similarity methods.

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3