Colorectal Cancer Classification and Survival Analysis Based on an Integrated RNA and DNA Molecular Signature

Author:

Mohammed Mohanad1ORCID,Mwambi Henry1,Omolo Bernard1ORCID

Affiliation:

1. School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

Abstract

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data, while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.

Funder

"GSK Africa Non- Communicable Disease Open Lab through the DELTAS Africa Sub-Saharan African Consortium for Advanced Biostatistics (SSACAB)"

Publisher

Bentham Science Publishers Ltd.

Subject

Computational Mathematics,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3